
Rapid, Reversible Oxygen Atom Transfer between an Oxomanganese(v) Porphyrin and Bromide: A Haloperoxidase Mimic with Enzymatic Rates**

Ning Jin, James L. Bourassa, Steven C. Tizio, and John T. Groves*

Synthetic manganese porphyrins and related systems have been used extensively in chemical modeling of biological monooxygenation reactions catalyzed by heme proteins.^[1] They are also versatile catalysts for the oxygenation of alkanes, alkenes, and nitrogen- and sulfur-containing compounds using oxygen donors such as iodosylbenzene, sodium hypochlorite, alkyl, aryl, and hydrogen peroxide, amine *N*-oxides, and molecular oxygen.^[2] Only recently has the key oxomanganese(v) intermediate been well characterized.^[3] Here we report that the oxomanganese(v)-5,10,15,20-tetrakis(*N*-methyl-2-pyridyl)porphyrin (1) can efficiently transfer its oxo ligand to bromide ion, and that this oxo transfer is rapid and reversible. [Eq. (1)]

The forward reaction mimics the halide oxidation reaction catalyzed by haloperoxidases,^[4] while the reverse reaction is the catalyst activation step in substrate oxygenation by manganese porphyrins. This well-behaved equilibrium allows the assignment of a free energy change for the reaction depicted in Equation (1).

OxoMn^VTM-2-PyP (1) has unusual stability in aqueous solution compared to other oxoMn^V porphyrin intermediates. [3b] It can be generated by the stoichiometric reaction of Mn^{III}TM-2-PyP^[5] (2) with oxidants such as HSO₅⁻, *m*-CPBA (chloroperoxybenzoic acid), and OCl⁻. We have found that hypobromite, a weaker oxidant, [6] is also able to generate 1 smoothly. Figure 1 a shows the reaction between 5 μ M 2 and 50 μ M HOBr/OBr^{-[7]} at pH 8.5 monitored by stopped-flow spectrophotometry. [3a,b] Clear isosbestic points were observed at 392, 444, and 558 nm. Remarkably, the identical isosbestic behavior was also found for the reverse reaction, oxoMn^V+Br⁻ at higher bromide concentration. Typical spectral changes observed for the oxo-transfer reaction from

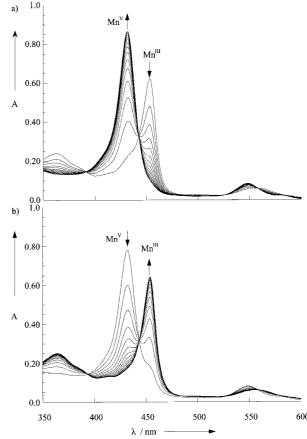


Figure 1. Time-resolved UV/Vis septra for the reaction of a) $5\,\mu m$ $Mn^{III}TM-2-PyP$ (2) and $50\,\mu m$ HOBr/OBr $^-$; b) $5\,\mu m$ $Mn^{V}TM-2-PyP$ (1) and $50\,m m$ Br $^-$ at pH 8.5 ($10\,m m$ Na $_2B_4O_7/H_2SO_4$ buffer). For both reactions there were 60 scans in 120 ms. Every fourth scan is shown.

1 to Br⁻ are shown in Figure 1b. The generation of hypobromite, which is favored by excess bromide and lower pH, was confirmed by observing the diagnostic bromination reaction of phenol red.^[8]

The pH dependence of the rate of oxo transfer to bromide was examined between pH 5.2 and 9.0 ($I = 0.25 \,\mathrm{m}$ NaClO₄). The reaction was found to be first-order in both oxoMn^V and Br-, and independent of the buffer concentration. Kinetic profiles were obtained by monitoring oxoMn^V (1) at 433 nm. Pseudo-first-order fitting of the kinetic data to a single exponential was carried out with at least six concentrations of Br- at each pH value. The apparent second-order rate constant k_{app} was calculated from the slope of the linear plot of $k_{\rm obs}$ versus $C_{\rm Br}$. Our results show that 1 was nearly as effective an oxygen donor to Br⁻ $(3.8 \times 10^5 \,\mathrm{m}^{-1} \,\mathrm{s}^{-1})$ at pH 7.0) as myeloperoxidase compound I $(1.1 \times 10^6 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1})$ at pH 7.0),[9] and much more effective than vanadium bromoperoxidase (estimated to be $2.78 \times 10^3 \, \text{m}^{-1} \, \text{s}^{-1}$ at pH 7.9 and $1.75 \times$ $10^5 \, \text{m}^{-1} \, \text{s}^{-1}$ at pH 4.0) and related functional mimics.^[10] The pH dependence of k_{app} , spanning five orders of magnitude, is plotted in Figure 2.

To explain this profound pH dependence, *two* proton transfers must be involved. We propose that **1** exists as a dioxo species [O=Mn^V-O-] at high pH,^[11] which is inert to the nucleophilic attack of Br-. Two fast acid-base equilibria

^[*] Prof. J. T. Groves, N. Jin, Dr. J. L. Bourassa, S. C. Tizio Department of Chemistry Princeton University Princeton, NJ 08544 (USA) Fax: (+1)609-258-0348 E-mail: jtgroves@princeton.edu

^[**] This work is supported by the National Science Foundation (CHE-9814301), the National Institutes of Health (GM36928), and Bayer AG

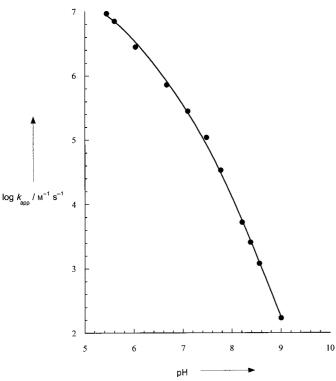


Figure 2. Plot of the second-order rate constants ($\log k_{\rm app}$) as a function of pH for the reaction between oxoMn $^{\rm V}$ TM-2-PyP (1) and Br $^{\rm -}$ (25 $^{\rm o}$ C, I = 0.25 $^{\rm m}$ NaClO₄). Compound 1 was generated by the reaction of 5 $^{\rm m}$ Mn $^{\rm III}$ TM-2-PyP (2) and 5 $^{\rm m}$ M potassium peroxymonosulfate (see ref. [3b]). Bromide concentrations ranged from 100 $^{\rm m}$ M to 50 mM depending on pH. The plotted curve was computed on the basis of best-fit parameters obtained from nonlinear least-squares analysis of the data points using Equation (2).

between the dioxo Mn^V [O= Mn^V -O-], oxo-hydroxo Mn^V [O= Mn^V -OH], and oxo-aqua Mn^V [O= Mn^V -OH₂] species must be required to fully activate the oxo Mn^V species prior to oxo-transfer reaction. [12] The experimental points fit well to Equation (2) (R = 0.9993) which was deduced from this reaction model (Scheme 1).

$$kapp = \frac{k_{int}a_{H}^{2}}{a_{H}^{2} + a_{H}k_{a1} + k_{a1}k_{a2}}$$
 (2)

From the data in Figure 2, we determined the pK_{a_2} of the $oxo-aqua\ Mn^V$ species to be 7.7 ± 0.1 . The pK_{a_1} must be less than 5 and beyond the range of the data. The intrinsic or pH-independent rate constant for the reaction between the doubly protonated $oxo-aqua\ Mn^V$ species and bromide ion, $k_{\rm int}$, could be estimated to be around $10^8\ M^{-1}\ s^{-1}$.

This fast, reversible oxo-transfer reaction provides an unusual opportunity to determine the equilibrium constant K_{oxo} for Equation (1) and to define the free energy of the high-

$$-\frac{\text{Mn}}{\text{Mn}}^{\text{V}} - \frac{\text{H}^{+}}{\text{-H}^{+}} - \frac{\text{OH}}{\text{Mn}}^{\text{V}} - \frac{\text{H}^{+}}{\text{-H}^{+}} - \frac{\text{OH}_{2}}{\text{Mn}}^{\text{V}} - \frac{\text{HBr}^{-}k_{int}}{\text{Mn}} - \frac{\text{OH}_{2}}{\text{Mn}}^{\text{III}} + \text{OBr}^{-}$$

$$= \frac{1}{\text{OH}_{2}} + \frac{\text{HH}^{+}}{\text{OH}_{2}} - \frac{\text{OH}_{2}}{\text{Mn}}^{\text{V}} - \frac{\text{HBr}^{-}k_{int}}{\text{OH}_{2}} - \frac{\text{OH}_{2}}{\text{Mn}}^{\text{III}} + \text{OBr}^{-}$$

Scheme 1. Reaction model for the oxo-transfer reaction.

valent oxoMn^V intermediate. $K_{\rm oxo}$ was calculated from the ratio of the forward and reverse rate constants, [13] $k_{\rm f}/k_{\rm r}$, at a given pH. Alternatively, $K_{\rm oxo}$ was determined directly by finding the concentration ratio $C_{\rm BrO^-}/C_{\rm Br^-}$ that caused no UV/Vis spectral changes in a Mn^V-Mn^{III} solution (2.5 μ M in each) upon stopped-flow mixing with a BrO⁻-Br⁻ solution. $K_{\rm oxo}$ was found to vary from 3.5 at pH 7.3 to 2.9×10^{-5} at pH 9.6. The data could be extrapolated to other pH regions with the Nernst equation from the known Mn^V and Mn^{III} p K_a values. Figure 3 shows a potential versus pH diagram for the oxoMn^V/Mn^{III}TM-2-PyP system and those for the BrO⁻/Br⁻ and ClO⁻/Cl⁻ redox pairs. Interestingly, this relationship predicts that

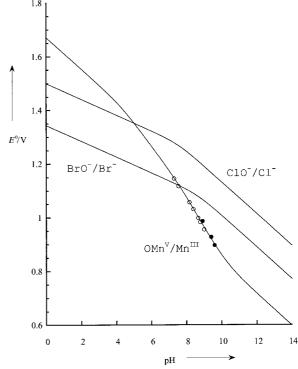


Figure 3. Standard electrode potential (E°) versus pH diagram for the oxoMn^V/Mn^{III}TM-2-PyP system along with BrO⁻/Br⁻, ClO⁻/Cl⁻ redox pairs. Equilibrium constants were either measured directly (solid circles), or calculated from the ratio of forward and reverse reaction rate constants $k_l k_r$ (empty circles). E° was then calculated from equilibrium constants and known BrO⁻/Br⁻ potentials. ^[6] The oxoMn^V/Mn^{III} curve was extrapolated to other pH regions with the Nernst equation using the experimental data and the following p K_a values: Mn^{III}(OH₂)₂, p K_{a_1} =9.6, p K_{a_2} =10.7; oxoMn^V(OH₂) p K_{a_1}

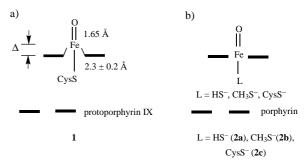
 oxoMn^V(OH₂) p K_{a_1} 5 p K_{a_2} =7.7, (see ref. [11]). Crossings of the BrO⁻/Br⁻ and ClO⁻/Cl⁻ lines are at pH 5.1 and 7.6, respectively.

chloride oxidation should become accessible near pH 5. Indeed, the reaction of Cl⁻ with oxoMn^VTM-2-PyP (1) to afford hypochlorite, as monitored by the chlorination of methyl orange, was found to occur efficiently at pH < 5. The

chlorination yields were significantly lower at higher pH^[14] in good agreement with the predicted behavior.

These results show that bromide and chloride are readily oxidized to the corresponding hypohalite by an oxoMn^V porphyrin (1). The reversibility of this process has placed this oxoMn^V intermediate on a

thermochemical energy scale.^[15] The more reactive oxoiron porphyrin systems^[16] are under current investigation.


Received: June 8, 2000 [Z15242]

- [1] a) B. Meunier in *Biomimetic Oxidations Catalyzed by Transition Metal Complexes* (Ed.: B. Meunier), Imperial College Press, London, **2000**, pp. 171–214; b) J. L. McLain, J. Lee, J. T. Groves in *Biomimetic Oxidations Catalyzed by Transition Metal Complexes* (Ed.: B. Meunier), Imperial College Press, London, **2000**, pp. 91–170.
- [2] a) B. Meunier, Chem. Rev. 1992, 92, 1411–1456; b) J. T. Groves, K. Shalyaev, J. Lee in The Porphyrin Handbook, Vol. 4 (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San Diego, 2000, pp. 17–40.
- [3] a) J. T. Groves, J. Lee, S. S. Marla, J. Am. Chem. Soc. 1997, 119, 6269–6273; b) N. Jin, J. T. Groves, J. Am. Chem. Soc. 1999, 121, 2923–2924; c) C. G. Miller, S. W. Gordon-Wylie, C. P. Horwitz, S. A. Strazisar, D. K. Peraino, G. R. Clark, S. T. Weintraub, T. J. Collins, J. Am. Chem. Soc, 1998, 120, 11540–11541; d) F. M. MacDonnell, N. L. P. Fackler, C. Stern, T. V. O'Halloran, J. Am. Chem. Soc. 1994, 116, 7431–7432.
- [4] a) B. W. Griffin in Peroxidases in Chemistry and Biology, Vol. 2 (Eds.: J. Everse, K. E. Everse, M. B. Grisham), CRC Press, Boca Raton, FL, 1991, pp. 85–138; b) A. Butler, J. V. Walker, Chem. Rev. 1993, 93, 1937–1944; c) G. Labat, B. Meunier, J. Chem. Soc. Chem. Commun. 1990, 1414–1416; d) H.-A. Wagenknecht, C. Claude, W. D. Woggon, Helv. Chim. Acta. 1998, 81, 1506–1520.
- [5] Mn^{III}TM-2-PyP was purchased from Mid-century, Posen, IL, and was further purified. Its concentration was standardized spectrophotometrically using ε=129000 cm⁻¹m⁻¹; I. Batinic-Haberle, L. Benov, I. F. Spasojevic, I. Fridovich, *J. Biol. Chem.* 1998, 273, 24521–24528.
- [6] T. Mussini, G. Faita in Encyclopedia of Electro- chemistry of the Elements, Vol. 1 (Ed.: A. J. Bard), Marcel Dekker, New York, 1973, p. 11 and p. 64.
- [7] Solutions of HOBr⁻/OBr⁻ that were free of Br⁻ were prepared by mixing equimolar amounts of OCl⁻ and Br⁻; M. Gazda, D. W. Margerum, *Inorg. Chem.* 1994, 33, 118–123.
- [8] A buffered (pH 7.0, 25 mm phosphate buffer) solution of 10 μm (2), 5 mm NaBr, and 50 μm phenol red had 100 μm HSO₅⁻ added, resulting in production of bromophenol blue (yield 30%, λ_{abs} = 592 nm) within 1 s. In the absence of catalyst, control experiments showed less than 1% production of bromophenol blue within 1 min.
- [9] P. G. Furtmüller, U. Burner, C. Obinger, *Biochemistry* 1998, 37, 17923–17930.
- [10] A. Butler, A. H. Baldwin, Struct. Bonding (Berlin) 1997, 89, 109 132, and references therein.
- [11] The dioxo nature of 1 at pH 12-14 was first suggested by Su et al. F. C. Chen, S. H. Cheng, C. H. Yu, M. H. Liu, Y. O. Su, J. Electroanal. Chem. 1999, 474, 52-59.
- [12] The second protonation can occur either on the hydroxo ligand affording an oxo-aqua species (shown in Scheme 1) or on the oxo ligand giving a dihydroxo species. Our results support the oxo-hydroxo tautomerism mechanism proposed by Meunier to explain the solvent oxygen incorporation to substrate in manganese porphyrin catalyzed processes. J. Bernadou, B. Meunier, *Chem. Commun.* 1998, 20, 2167-2173.
- [13] In the pH region investigated, the reverse reaction rate constant, $k_{\rm r}$ was found to be first order in both $c_{\rm Mn^{III}}$ and $c_{\rm OBr^-+HOBr}$.
- [14] In a typical experiment, 1M NaCl (1 mL), 2 (1 mL), 50 mm pH 5 phosphate buffer solution (2 mL), 1 mm methyl orange (1 mL) were mixed prior to the addition of a 10 mm oxone (HSO₅^{-;} 100 μL) solution. After two minutes, this was extracted with *n*-heptane. GC-MS analysis revealed monochlorodimethylaniline (*m*/*z* 154) and dichlorodimethylaniline (*m*/*z* 188), matching with calibration experiments using methyl orange and authentic hypochlorite. The estimated yields of OCl⁻ per mole of oxone were 85% at pH 5, 5.5% at pH 7.6, and 0.3% at pH 9.0.
- [15] R. H. Holm, J. P. Donahue, *Polyhedron* **1993**, *12*, 571 589.
- [16] J. Lee, J. A. Hunt, J. T. Groves, J. Am. Chem. Soc. 1998, 120, 7493 7501.

The High-Valent Compound of Cytochrome P450: The Nature of the Fe—S Bond and the Role of the Thiolate Ligand as an Internal Electron Donor**

François Ogliaro, Shimrit Cohen, Michael Filatov, Nathan Harris, and Sason Shaik*

Recently, Schlichting et al.^[1] have used time-lapse X-ray crystallography to "photograph" the hydroxylation pathway of camphor by cytochrome P450_{cam}, which includes the elusive, high-valent iron-oxene species (1 in Scheme 1a). In response to this exciting work, we present here an extensive density functional theoretical (DFT) investigation of iron

Scheme 1. Selected X-ray diffraction data for a) the high-valent P450 iron oxene species 1. Δ indicates the protrusion of the iron center from the porphyrin plane. b) Model systems $2\mathbf{a} - \mathbf{c}$.

oxene (2a-c), Scheme 1b) with emphasis on geometry, electronic structure, and unusual features of the Fe-S bonding. Thus, while the X-ray diffracting species[1] qualitatively fits iron oxene, its precise geometric data are less certain. For example, the distance between the iron and the proximal ligand, $r_{\text{Fe-S}}$, appears quite short but the value $2.3 \pm 0.2 \text{ Å}$ has a significant uncertainty. Another uncertainty, discussed by the authors, [1] is the possible contamination by an additional species. Theory^[2] itself has not as yet settled on a value for this distance, which appears to vary between 2.37-2.69 Å for different models systems and computational levels.[2] An associated issue is the theoretical characterization of the flexibility of the Fe-S linkage in 1 and the role of the thiolate ligand as an internal electron donor.[3] A still uncertain feature of P450 iron oxene is whether it involves a porphyrin cation radical, as in the analogous Compound I species of horseradish peroxidase^[4a] and synthetic models,^[4b] or, rather, does it possess a sulfur radical situation, [2a,e] or perhaps a resonance hybrid of these forms.^[3,5] A related question concerns the spin-state identity; high-spin as in some Compound I species, [4a,b] or low

^[*] Prof. S. Shaik, Dr. F. Ogliaro, S. Cohen, Dr. M. Filatov, Dr. N. Harris Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry Hebrew University, 91904 Jerusalem (Israel) Fax: (+972)2-6584680 E-mail: sason@yfaat.ch.huji.ac.il

^[**] This research was sponsored in part by the Israeli Science Foundation (ISF) and the Binational German-Israeli Foundation (GIF). F.O. thanks the EU for a Marie Curie Fellowship.